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What is image restoration?

NV g S

Colourisation Super- Inpainting Inpainting
resolution (regular (arbitrary
shape) artefacts)
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have the same dimensionality, for
each step the denoising model is a |
U-Net with some modifications _H ﬂ'H

« Group normalisation 144 t
- Global self-attention H {HH

. . . . ..-.. L’.-.- # max pool 2x2
« Sinusoidal positional time e B
embeddlngs Concatenated tO Credit: Ronneberger et al, “Convolutional Networks for Biomedical

the input of each block Image Segmentation”

- Since the input, output and latents ﬂ I

» Instead of predicting the denoised
image, the network predicts the
noise that was added to it
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Diffusion process - recap

 To produce each

- latent, we can add
=[] a(atlze-1) (1) noise iteratively
t=1 7’“"“‘! (slow)
= N(xt; /1 — Bixi_1,B:)g (2)
diagonod

covdviome wmodrie |



University
of Glasgow

noised latents directly conditioned on the input zo. With
= t . .
a; = 1—pF;and oy = Hs:O a5, We can write the marginal

q(zt|z0) = N (245 Va0, (1 — a)T) (8)
Ty = Vo + V1 — e ©
where e ~ N (0,I). Here, 1 — @; tells us the variance of the

noise for an arbitrary timestep, and we could equivalently
use this to define the noise schedule instead of ;.

o
=
=
2.

on process -recap

7

...or we can derive the
variance scale for an
arbitrary step - accumulate
the noise from the first step
to the step we need
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 We can condition on
class labels - embed
class label v. along
with time embedding
e, - (Nichol &
Dhariwal, 2021)

Credit: Nichol & Dhariwal,
“Improved denoising diffusion
probabilistic models.”
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« Classifier guidance
(Dhariwal & Nichaol,
2021)

e y comes from the
downsampling half
of the UNet, which
Is used as a
classifier

Diffusion conditioning - recap

-
> 0 Do DL n oy
MELIE md ) el

4

!

Figure 6: Samples from BigGAN-deep with truncation 1.0 (FID 6.95, left) vs samples from our
diffusion model with guidance (FID 4.59, middle) and samples from the training set (right).

Credit: Dhariwal & Nichol,
“Diffusion Models Beat GANs on
Image Synthesis”
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« Classifier guidance (Dhariwal & Nichol, 2021)

Pe,cp(fEt |ﬂ7t+1, y) = Zpe (ZUt |$t+1)p¢(y|-’13t)

Vi, log(pe(xt)pe (y|xt)) = Vi, log pg(xt) + Vi, log pe (y|zs)

= ———co(a) + Vi, logpy (o)

é(zt) = eg(xt) — V1 — 0y Vi, log py(y|ze)
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* We can condition

on text
descriptions
« Each attention
layer is
“a hedgehog using a “a corgi wearing a red bowtie “robots meditating in a “a fall landscape with a small atte n d I n g to
calculator” and a purple party hat” vipassana retreat” cottage next to a lake” e a Ch to ke n fo r

7 B S the text
= embedding

e Doesn’t work

very well still
Credit: Dhariwal & Nichol,

“GLIDE: Towards Photorealistic
Image Generation and Editing

“a surrealist dream-like oil “a professional photo of a “a high-quality oil painting “an illustration of albert with
painting by salvador dali sunset behind the grand of a psychedelic hamster einstein wearing a superhero . . . ”
of a cat playing checkers” canyon” dragon” costume” Text-Guided Diffusion Models
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« CLIP guided diffusion:

At inference time, use CLIP
guidance

CLIP outputs a similarity score
between image and text for
each pixel

Use that gradient at each time
step to push the image in the
direction which would give it
higher score/smaller CLIP loss

Diffusion conditioning - recap

=N
)
e

S,

(c) GLIDE (CLIP guidance, scale 2.0)
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« Classifier-free guidance:

* Train with and without text
embeddings

« Predict an image without the text
prompt and with the text prompt

 Find the difference between the
two

« Use that gradient to go in the
direction of the image with text
using a scaling factor for the
vector

LIDE (Classifier-free guidance, scale 3.0)

Q

(d
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End-to-end training with Using pre-trained models,
conditioning conditioning only during
. SR3 inference
 Palette * DDRM
 RePaint

« Stable Diffusion
 DiffEdit (bonus!)



s Ef%ﬁigé% SR3 (Saharia et al.)

Bicubic Regression SR3 (ours) Reference

* We can condition on another
image
* low res image for superresolution
» grayscale image for colourisation
« images with missing patches for
inpainting
» Concatenate noise vector with the
conditioning image

« Slow, diffusing the entire image

Credit: Saharia et al, “Image
Super-Resolution via lterative
Refinement”
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' 2 Diffusion Models (Saharia et al.)

Reference Reference

—

Reference

Credit: Saharia et al, “Palette:
Image-to-Image Diffusion
Models”




gf&lﬁif,%% Diffusion model for film artifact removal

input reconstruction 3 reconstruction 2 reconstruction GT

e 97.8 M params

weeks ago weeks ago now
Medium level damage: e bs=8
e W W— 1M iterations in SR3
. 7 w7 - s paper
7% . ,
m m % e very slow if you don’t
High evel damage: have a TPU
e task-specific - need lots
l‘ of data
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_ 2 i  use pretrained
mm NN . ®e unconditional DDPM
;,‘-'_ , (b) Deblurring (Noisy with oy = 0.1) ° decompose

mm m‘ “’v“‘”""" degradation operator
‘ eht‘:lolore b1 H USing SVD
im venfam, s
é:‘ mm (¢) Inpainting (Noisy with oy _'() 1) o perform dl_ﬁ_-USIOn |n
A z A Ys' spectral space
Noiseless Noisy with oy = 0.1 ‘ e {+ 3. ?‘ i

(d) Colorization (Noisy with oy = 0.1)

(a) Super-resolution

Credit: Kawar et al, “Denoising
Diffusion Restoration Models”

T-1

y = Hx + z, q(x1:7|%0,y) = ¢ (x7[%0,¥) H ¢ (Xt[%Xt+1,%0,¥),
t=0



A Ef&ﬁg&% RePaint (Lugmayr et al., 2022)

num_inference_steps=>50, jump_length=10, jump_n_sample=10

1000 -
. e 800 4
Pretrained Unconditional
Diffusion Model
/ g 6001
X¢-1~Po S
: 2 400
) = 4
(%) b—3
2 =
[
V
=
200 1
0 -

0 100 200 300 400 500
Inference step

Input n=4 n=35

Figure 3. The effect of applying n sampling steps. The first example with n = 1 is the DDPM baseline, the second with n = 2 is with
one resample step. More resampling steps lead to more harmonized images. The benefit saturates at about n = 10 resamplings.

600 700 800

Credit: Lugmayr et al,
“RePaint: Inpainting
using Denoising
Diffusion Probabilistic
Models”
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Latent Space ) (Conditioning)
- Diffusion Process emanti
Ma
s ( Denoising U-Net €y Text

B

Pixel Space

\ Getosdotnd psasley
K A

denoising step crossattention  switch  skip connection concat - 4

o

76

Credit: Romach et al., “High-Resolution Image
Synthesis with Latent Diffusion Models”



o] University

of Glasgow Latent diffusion (Romach et al.)
o




ggﬁigg% Stable Diffusion Inpainting

“cat sitting on a bench”



Eféﬁemy Stable Diffusion Inpainting

SEOW

Unconditional Conditional
(legacy) e fine-tune
e use pre-trained pre-trained SD
SD model on
e make inpainting
prediction from e pass the mask,
noise masked latents,
e mask out the original latents as
latents a 9-channel input
e make next to the U-Net
prediction

e etc




([)J%r(éiﬁersity RePaint (Lugmayr et al., 2022)

SEOW



([)}réiﬁersity RePaint (Lugmayr et al., 2022)

SEOW

e Only works with the sampler used to train SD
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* denoise once using
reference text

* denoise again using query
text

 the difference in noise
estimates => |ocations that
are predicted to change the
most between conditioning
on the original and new texts

Step 1: Compute Mask

Credit: Couairon et al.,”DiffEdit:
Diffusion-based semantic image editing with
mask guidance”
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reference: “horse”
query: “zebra”

e noise-denoise 10 times with
each prompt

e accumulate predicted noises

e find difference

Check out “DiffEdit paper
implementation” by Kevin Bird



https://blog.problemsolversguild.com/technical/research/2022/11/02/DiffEdit-Implementation.html
https://blog.problemsolversguild.com/technical/research/2022/11/02/DiffEdit-Implementation.html

1y ey DiffEdit (Couairon et al., 2022)

SEOW

“horse” noise

“zebra” noise

difference
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100 200 300

horse - zebra



gj;réiﬁesf;égg DiffEdit (Couairon et al., 2022) - new idea

“horse” noise

“- horse” noise

difference
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100 100

200 200

300

300

400 400

500
0 100 200 300 400 500 0 100 200 300 400 500

500

horse - zebra horse - (-horse)
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100 A

200 A

300 A

400 A

500 - : . "~ - |
0 100 200 300 400 500

damaged film photo damaged film photo - (-damaged film photo)
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