
Diffusion models for Image Restoration

Daniela Ivanova
Computer Vision and Autonomous Systems (CVAS)



What is image restoration?

Colourisation Super-
resolution

Inpainting
(regular 
shape)

Inpainting
(arbitrary 
artefacts)



Diffusion architecture - recap

• Since the input, output and latents 
have the same dimensionality, for 
each step the denoising model is a 
U-Net with some modifications

• Group normalisation
• Global self-attention
• Sinusoidal positional time 

embeddings concatenated to 
the input of each block

• Instead of predicting the denoised 
image, the network predicts the 
noise that was added to it

Credit: Ronneberger et al, “Convolutional Networks for Biomedical 
Image Segmentation”



Diffusion process - recap

• To produce each 
latent, we can add 
noise iteratively 
(slow)



Diffusion process - recap

• …or we can derive the 
variance scale for an 
arbitrary step - accumulate 
the noise from the first step 
to the step we need



Diffusion conditioning - recap

• We can condition on 
class labels - embed 
class label vi along 
with time embedding 
et - (Nichol & 
Dhariwal, 2021)

Credit: Nichol & Dhariwal, 
“Improved denoising diffusion 

probabilistic models.”



Diffusion conditioning - recap

• Classifier guidance 
(Dhariwal & Nichol, 
2021)
• y comes from the 

downsampling half 
of the UNet, which 
is used as a 
classifier

Credit: Dhariwal & Nichol, 
“Diffusion Models Beat GANs on 

Image Synthesis”



Diffusion conditioning - recap

• Classifier guidance (Dhariwal & Nichol, 2021)



Diffusion conditioning - recap

• We can condition 
on text 
descriptions

• Each attention 
layer is 
attending to 
each token for 
the text 
embedding

• Doesn’t work 
very well still

Credit: Dhariwal & Nichol, 
“GLIDE: Towards Photorealistic 

Image Generation and Editing 
with

Text-Guided Diffusion Models”



Diffusion conditioning - recap

• CLIP guided diffusion: 
• At inference time, use CLIP 

guidance
• CLIP outputs a similarity score 

between image and text for 
each pixel

• Use that gradient at each time 
step to push the image in the 
direction which would give it 
higher score/smaller CLIP loss



Diffusion conditioning - recap

• Classifier-free guidance:
• Train with and without text 

embeddings
• Predict an image without the text 

prompt and with the text prompt
• Find the difference between the 

two
• Use that gradient to go in the 

direction of the image with text 
using a scaling factor for the 
vector



Diffusion models for image restoration

End-to-end training with 
conditioning
• SR3
• Palette

Using pre-trained models, 
conditioning only during 
inference
• DDRM
• RePaint
• Stable Diffusion
• DiffEdit (bonus!)



SR3 (Saharia et al.)

• We can condition on another 
image

• low res image for superresolution
• grayscale image for colourisation
• images with missing patches for 

inpainting

• Concatenate noise vector with the 
conditioning image

• Slow, diffusing the entire image

Credit: Saharia et al, “Image 
Super-Resolution via Iterative 

Refinement”



Palette: Image-to-Image 
Diffusion Models (Saharia et al.)

Credit: Saharia et al, “Palette: 
Image-to-Image Diffusion 

Models”



Diffusion model for film artifact removal

● 97.8 M params
● bs=8
● 1M iterations in SR3 

paper
● very slow if you don’t 

have a TPU
● task-specific - need lots 

of data



DDRM (Kawar et al., 2022)

• use pretrained 
unconditional DDPM

• decompose 
degradation operator 
H using SVD

• perform diffusion in 
spectral space

Credit: Kawar et al, “Denoising 
Diffusion Restoration Models”



RePaint (Lugmayr et al., 2022)

Credit: Lugmayr et al, 
“RePaint: Inpainting 

using Denoising 
Diffusion Probabilistic 

Models”



Latent diffusion (Romach et al.)

Credit: Romach et al., “High-Resolution Image 
Synthesis with Latent Diffusion Models”



Latent diffusion (Romach et al.)



Stable Diffusion Inpainting

“cat sitting on a bench”



Stable Diffusion Inpainting

Unconditional 
(legacy)
● use pre-trained 

SD
● make 

prediction from 
noise

● mask out the 
latents

● make next 
prediction

● etc

Conditional
● fine-tune 

pre-trained SD 
model on 
inpainting

● pass the mask, 
masked latents, 
original latents as 
a 9-channel input 
to the U-Net



RePaint (Lugmayr et al., 2022)

What if we tried RePaint it in latent space? 



RePaint (Lugmayr et al., 2022)

What if we tried it in latent space?

● Only works with the sampler used to train SD



DiffEdit (Couairon et al., 2022)

• denoise once using 
reference text

• denoise again using query 
text

• the difference in noise 
estimates => locations that 
are predicted to change the 
most between conditioning 
on the original and new texts

Credit: Couairon et al.,”DiffEdit: 
Diffusion-based semantic image editing with 

mask guidance“



DiffEdit (Couairon et al., 2022)

reference: “horse”
query: “zebra”

● noise-denoise 10 times with 
each prompt

● accumulate predicted noises
● find difference

Check out “DiffEdit paper 
implementation” by Kevin Bird

https://blog.problemsolversguild.com/technical/research/2022/11/02/DiffEdit-Implementation.html
https://blog.problemsolversguild.com/technical/research/2022/11/02/DiffEdit-Implementation.html


DiffEdit (Couairon et al., 2022)

“horse” noise

“zebra” noise

difference



DiffEdit (Couairon et al., 2022)

horse - zebra



DiffEdit (Couairon et al., 2022) - new idea

“horse” noise

“- horse” noise

difference



DiffEdit (Couairon et al., 2022)

horse - zebra horse - (-horse)



DiffEdit (Couairon et al., 2022)

damaged film photo damaged film photo - (-damaged film photo)



Thank you!
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